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Abstract. Hertz–Debye potentials are generally used for time-harmonic fields. We are
interested here in arbitrary time-dependent pulses tackled with the help of the Laplace transform,
and in addition, we assume that propagation takes place in a chiral reciprocal medium. We show
how the Hertz–Debye potentials work to solve the Laplace transformed Maxwell equations and
illustrate this formalism with three applications. Finally, we discuss how to obtain the solution
in the time domain through the inverse Laplace transform.

1. Introduction

Hertz potentials are a well known tool [1] for solving Maxwell’s equations. We discuss
here how these potentials can be used to analyse the structure of electromagnetic pulses,
originating at some timet0, depending arbitrarily on time and propagating in a dispersive
isotropic reciprocal medium. The old Sommerfeld–Brillouin problem [2, 3] is the prototype
of the pulses considered in this work. In mathematical terms, one has to deal with initial
value problems and as stated by Stratton [1], the Laplace transform

F(s) =
∫ ∞

0
e−stf (t) dt Res > 0 (1)

was introduced for the purpose of treating this kind of problem.
These pulses propagate in a medium with the constitutive relations

D(r, t) =
∫ ∞

0
ε(τ )E(r, t − τ) dτ +

∫ ∞
0
ξ(τ )B(r, t − τ) dτ

H(r, t) =
∫ ∞

0
µ−1(τ )B(r, t − τ) dτ −

∫ ∞
0
ξ(τ )E(r, t − τ) dτ (2)

whereE, B, D andH are the usual components of the electromagnetic field andε, µ and
ξ are the permittivity, permeability and chirality of the medium, respectively. Applying (1)
to (2) gives (we use the same symbol for a function and its transform)

D(r, s) = ε(s)E(r, s)+ ξ(s)B(r, s)
B(r, s) = µ(s)H(r, s)+ µ(s)ξ(s)E(r, s). (3)

In the Sommerfeld–Brillouin problemξ = 0, µ = 1, ε(s) = 1+ a2(s2+ bs+ s2
0)
−1 [1].

With the electromagnetic field null fort 6 0, the Laplace transformed Maxwell equations
are

curlE(r, s) = − s
c
B(r, s) curlH(r, s) = s

c
D(r, s)

divD(r, s) = divB(r, s) = 0. (4)
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Substituting (3) into (4) gives the system of equations to be solved in thes-domain and we
show how the Hertz potential technique works to obtain the solution. However, we first
present a complex formalism making the discussion of Maxwell’s equations easier.

2. Complex field vector

Let us consider the two complex vectors [4] (i= √−1)

P (r, s) = a(s)E(r, s)+ ib(s)H(r, s) Q(r, s) = b(s)D(r, s)+ ia(s)B(r, s) (5)

in which a(s) andb(s) are two functions to be determined. With (5), equations (4) become

curlP (r, s) = i
s

c
Q(r, s) divP (r, s) = 0. (6)

We now prove that in a medium with the constitutive relations (3), we may definea(s),
b(s) andm(s) so that equation (6) can be written

curlP (r, s) = ism(s)/cP (r, s) divP (r, s) = 0. (7)

From now on for simplification, we no longer write the argumentsr, s. Substituting
(3) into the definition ofQ (5) gives us withd = ε + µξ2

Q = (bd + iaµξ)E + (bµξ + iaµ)H (8)

and the conditionQ = mP produces the homogeneous system of equations

(m− iµξ)a − bd = 0 − µa + (m+ iµξ)b = 0 (9)

with non-trivial solutions ifm2+µ2ξ2−µd = 0 which impliesm = ±(εµ)1/2. A solution
of (9) is

a± =
√
ε ± iξ

√
µ b = ±√µ m = ±n n = √εµ. (10)

Substituting (10) into the definition ofP (5) gives

P± = (
√
ε ± iξ

√
µ)E ± i

√
µH (11)

and the Maxwell equations (7) take the simple form

curlP± = ±isn/cP± divP± = 0. (12)

Applying the terminology used in chemistry to classify chiral molecules, we could name
enantiomers the two componentsP+, P−, of the electromagnetic field. However, in this
complex formalismP+ andP− are complex conjugate, so the mixtureP+P− is racemic,
that is, the two enantiomers are present in equal amounts: we may therefore discard the
subscript± on complex quantities.

3. Complex potentials

3.1. Hertz potential

We look for solutions of equations (12) in terms of a vector potentialU and we get

P = i curlU i curlU = −ns/cU + gradV (13)

in which V is a scalar gauge field. Then, if5 is a solution of the vector wave equation
(1 is the Laplacian operator)15 − n2s2c−25 = 0, as shown in the appendix, a simple
calculation gives

U = −nsc−1Π+ i curl Π+ gradL

V = −div Π+ nsc−1L. (14)
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The complex vectorΠ is the Hertz potential andL is a scalar gauge that does not intervene
in the expressions of the electromagnetic field. Substituting (14) into the first relation (13)
gives the Righi–Whittaker formula [5]

P = −curl(curlΠ+ ipΠ) p = ns/c (15)

and using (11) (sinceE andH are real one has to restore the subscript±, 5 = 51+ i52)
√
εE± = −curl(curl51− + p52)√
µH± = −curl(curl52± p51) H =H + ξE. (16)

3.2. Hertz–Debye potentials

The previous expressions simplify considerably when the Hertz vector is radial, a frequent
situation in practice. In this case,5 may be expressed in terms of a scalar Debye solution
of the scalar wave equation1ψ − p2ψ = 0. Let (r, θ, φ) be the spherical coordinates and
ar ,aθ ,aφ the corresponding unit vectors, we then have

curl(rarψ) = [∂φ(rψ)/r sinθ ]aθ − [∂θ (rψ)/r]aφ
curl[curl(rarφ)] = [∂2

r (rψ)− p2rψ ]ar + [∂r∂θ (rψ)/r]aθ + [∂r∂φ(rψ)/r sinθ ]aφ
= − p2rarψ + gradL L = ∂r(r∂rψ). (17)

Substituting (17) into (15) yields a solution of Maxwell’s equations (12) in terms of the
scalar Debye potential5 = rarψ . We get from (16) withψ = ψ1+ iψ2

√
εEr,± = −[∂2

r (rψ1)∓ rp2ψ1]

r
√
εEθ,± = −[∂r∂θ (rψ1)± p∂φ(rψ2)/ sinθ ] (18)

r
√
εEφ,± = −[∂r∂φ(rψ1)/ sinθ ∓ p∂θ (rψ2)].

The components of
√
µH are obtained from (18) by changingψ1,±ψ2 into ψ2,∓ψ1.

Remark. The Hertz potentials are a powerful tool to find the electromagnetic field in a
region throughout whichε andµ are constant,ρ andJ equal to zero. However, to determine
their physical significance, one has to relate them to their sources. LetP and M denote
the electric and magnetic polarization vectors and letQ = P+ iM, then the Hertz potential
satisfies the inhomogeneous wave equation1Π− p2Π = −Q [1, 9].

4. Applications

Hertz and Hertz–Debye potentials have been used in the past mainly in the frequency
domain [1, 5–12] for time harmonic fields and except for [11, 12] in non-chiral media. As
states in the introduction, we are concerned here with initial value problems and arbitrary
time-dependent pulses. We next give three applications of the formalism developed in
section 3.

4.1. Radiation from an electric dipole

As an illustration of the previous remark, we consider a linear electric dipoleq(t)U(t)

located at the origin of coordinates and vibrating in a fixed direction specified by the unit
vectorak, U(t) is the unit step function implying that the radiation is zero fort 6 0. In a
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medium where the refractive indexn and the chirality parameterξ are constant, the Hertz
vector is [9]

5 = r−1q(s) e−prak p = ns/c (19)

wherer is the distance to the origin. Substituting (19) into (16) gives, withq = q1+ iq2

√
εE± = A1q1(s)(ak,ar )ar − A2q1(s)ak ± A3q2(s)(ak ∧ ar ). (20)

Exchangingq1,±q2 into q2,∓q1 in this expression gives
√
µH± and

rA1 = (3r−2− 3pr−1+ p2) e−pr

rA2 = (r−2+ pr−1+ p2) e−pr (20a)

rA3 = (pr−1+ p2) e−pr .

Taking thek-direction as thez-axis, these relations reduce to (
√
µH is obtained as stated)

r2√εEr,± = 2(p + r−1)q1(s) e−pr cosθ

r
√
εEθ,± = (r−2+ pr−1+ p2)q1(s) e−pr sinθ (21)

r
√
εEφ,± = ±p(p + r−1)q2(s) e−pr sinθ.

One observes at once that whenq(s) is real the only non-null components areEr,Eθ ,Hφ ,
and that the radial field does not depend on chirality.

In these expressions,q(s) is the Laplace transform (when it exists) of any function
q(t)U(t). For instance, for a harmonic pulse exp(iωt)U(t) we haveq(s) = (s + iω)−1

while for a dipole radiating a sequence ofj square pulses [13], each with a durationT

q(s) = (q − e−2jsT )/s(1+ esT ). (22)

Substituting (22) into (20) or (21) gives the electromagnetic field radiated by a dipole feeded
with digital pulses.

4.2. Guided waves

We consider the propagation in the directionz > 0 of an electromagnetic wave launched at
t = 0 in a medium with the constitutive relations (3) and bounded by perfectly conducting
planes located atx = 0 andx = a. The only non-null component5y of the Hertz potential
vector satisfies the 2D wave equation(∂2

x + ∂2
z − p2)5y = 0 with the solutions null for

x = 0, a

5y(x, z, s) = A sink1x exp(−k3z) (23)

k1 = lπ/a k3 = (p2+ k2
1)

1/2 (24)

l is an arbitrary integer andA = A1 + iA2 a complex constant. Substituting (23) into (16)
gives

√
εEx,± = ±A2k3p sink1x exp(−k3z)√
εEy,± = A1p

2 sink1x exp(−k3z) (25)√
εEz± = ±A2k1p cosk1x exp(−k3z).

The components ofH are obtained as previously by changingA1,±A2 into A2,∓A1. So,
in a chiral wave guide, the TE and TM waves are coupled. We remind that in (25)p and
k3 are function ofs.
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4.3. Diffraction of a harmonic pulse

We consider a harmonic pulse exp[iωt + ikx cosθ0 + ikz cosθ0]U(t) impinging with the
angle of incidenceθ0 on a perfectly conducting half planez = 0, x > 0, immersed in a
medium with a constant refractive index and chirality parameter. Generalizing somewhat
the Bateman presentation [5] of the Sommerfeld diffraction theory, we write the non-null
component5y of the Hertz potential

5y = AU1+ BU2 (26)

in which using the polar coordinatesx = r cosθ andz = r sinθ , the functionsU1 andU2,
are

U1 = (s + iω)−1 exp[iknr cos(θ − θ0)] eiπ/4
∫ T

−∞
exp(−iu2) du

U2 = (s + iω)−1 exp[iknr cos(θ + θ0)] eiπ/4
∫ T

−∞
exp(−iu2) du (27a)

T± = (2nkr)1/2 cos[(θ ± θ0)/2] (27b)

while the constantsA, B are determined by the boundary conditions on the perfectly
conducting screen

Ey|S = 0 (28a)

Hy|S = 0 (28b)

accordingly as the electric or magnetic vector is parallel to the edge of the screen.
Now from (16) we get

√
εEx,± = ±p Im (∂z5y)√
εEy,± = −p2 Re(5y) (29)√
εEz,± = −+p Im (∂x5y).

For
√
µH changep and Re into−p and Im. Substituting (26) into (29) and using (27a)

one checks easily that condition (28a) is satisfied forB = −A. For (28b) we first remark
that according to the Maxwell equations (12)

∂y(Hz + ξEz) = ∂z(Hy + ξEy) = pEx (30)

however, since the electromagnetic field does not depend ony, condition (28b) is equivalent
to

(pEx + ξ∂zEy)|s = 0 (31a)

that is using (29)

(Im − ξ Re)(∂z5y)|s = 0 (31b)

∂z5y reduces to∂θ5y for θ = 0, 2π . Then, using (27a) and (27b) a simple calculation
shows that condition (28b) is satisfied forA = B.

The Bateman technique for solving the Sommerfeld problem in a bi-isotropic medium
is discussed in [14] for an incident harmonic plane wave.
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Remark. These applications show that the presence of chirality does not affect very
much the mathematical development of Hertz potentials, and this is essentially because
we have considered reciprocal chiral media (the existence of more general media is still
controversial) in which the two components of the electromagnetic field have the same
amplitude. However, from a physical point of view, the importance of chirality should not
be minimized: for instance, TE and TM waves become coupled in a chiral wave guide and
the role of chiral material in the diffraction of radar waves is important.

In some of these applications whereε, µ, ξ are assumed constant, the case where they
depend ons is easy to tackle, only the calculation of the inverse Laplace transform is more
difficult.

5. Inverse Laplace transform

The examples of section 4 prove that the Laplace transform is a powerful tool in solving
initial value problems in thes-domain. However, except in some cases where changings

into iω provides a clear picture of the solution in the frequency domain, one is generally
more interested by the time behaviour of the solution. So, we need to discuss how to
perform the inverse Laplace transform, leaving aside the very particular case where it can
be found in a table [15].

We deal with a scalar fieldF(x, s), noting that the solution of the Laplace transformed
wave equation has the general form (see section 4)

F(r, s) = f (r, s)e−g(r,s) (32)

then, the inverse Laplace transform of (32) is supplied by the Bromwich integral [16]

F(r, t) = (2π i)−1
∫
Br

est−g(r,s)f (r, s)ds. (33)

The contourBr is a straight line fromL − i∞ to L + i∞ whereL > 0 is real and all the
singularities of the integrand are on the left ofL. Generally the singularities ofst − g(r, s)
are branch points while those off (r, s)may be poles and branch points. The inverse Laplace
transform is an ill-posed problem in Hadamard’s sense (see [17] for a recent discussion of
this point) so that one has to be careful. We list three classes of techniques to tackle (33).

(1) When only singularities off (r, s) are poles, one may look for an asymptotic
approximation of (33) with the help of saddle-point methods as illustrated for instance
by Oughstunet al [18] in their analysis of the Sommerfeld–Brillouin problem. A recent
review of these asymptotic techniques is given in [19]. The situation is more difficult when
f (r, s) has branch points, one has in this case to deform carefully the Bromwich contour
to get approximate equivalent contours [20].

(2) There exist now powerful and efficient numerical codes to perform inversion
efficiently. They use either the fast Fourier transform [21] or more specific algorithms
[22].

(3) For real s, the inverse Laplace transform may be obtained by some kind of
regularization technique [23] or by an approximation of the Widder inverse formula [24]

F(t) = lim
n⇒∞[sn+1/n!(−d/ds)nf (s)]s=n/t . (34)

This formula gives numerical relations between the image and the original at any point
whereF(t) has limited total fluctuation. It may be expected that in considering (34) for
finite n, one obtains a set of approximations forF(t). We discuss these approximations
later.



Hertz–Debye potentials and pulse propagation 5483

6. Conclusion

Maxwell’s equations have been the basis of electromagnetic theory for a century. They
were successful in providing solutions with sinusoidal time variation which were especially
convenient since technology could mainly generate sequences of harmonic waves. However,
the recent blossoming of digital technology makes it necessary to look for solutions
of Maxwell’s equations which depend arbitrarily on time. As shown here, the Hertz–
Debye potential technique coupled with the Laplace transform is an elegant answer to this
requirement. Although our investigations were limited to initial value problems one could
tackle similarly initial-boundary value problems and in this case it may be interesting to
work with a covariant Laplace transform [25], especially when electromagnetic pulses are
propagated in a moving media.

As shown here, the complex formalism of electromagnetism [4] makes it possible to
unify the analysis of wave propagation is isotropic and bi-isotropic media. However, the
constitutive relations to be used in a medium sustaining arbitrary and in particular digital
pulses are still a challenge since the time behaviour of materials is rarely known under
transient conditions. It is unfortunate that few studies have been carried out in this domain.

Appendix

We obtain from (14)

curlU = −ns/ccurlΠ+ i[grad divΠ−1Π] (A1)

gradV = −grad divΠ+ ns/cgradL (A2)

so, taking into account (13)

−ns/cU + gradV = n2s2/c2Π− ins/ccurlΠ− grad divΠ. (A3)

The comparison of (A1) multiplied by i with (A3) gives the result.
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